CXSD62118单相恒定时间同步的PWM控制器驱动N通道mosfet低压芯片组RAM电源
发表时间:2020-04-24
浏览次数:108

目录0bF嘉泰姆

1.产品概述                       2.产品特点0bF嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 0bF嘉泰姆
5.产品封装图                     6.电路原理图                   0bF嘉泰姆
7.功能概述                        8.相关产品0bF嘉泰姆

一,产品概述(General Description)   0bF嘉泰姆


  The CXSD62118 is a single-phase, constant-on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62118 steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.0bF嘉泰姆
  The CXSD62118 provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62118 provides very high efficiency over light to heavy loads with loading-0bF嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.0bF嘉泰姆
  The CXSD62118 is equipped with accurate positive current-limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62118 has a 1ms digital soft-start and built-in an integrated output discharge method for soft-stop. An internal integrated0bF嘉泰姆
soft-start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors with controlled reverse inductor current.0bF嘉泰姆
  The CXSD62118 is available in 10pin TDFN 3x3 package.0bF嘉泰姆
二.产品特点(Features)0bF嘉泰姆


Adjustable Output Voltage from +0.7V to +5.5V0bF嘉泰姆
- 0.7V Reference Voltage0bF嘉泰姆
- ±1% Accuracy Over-Temperature0bF嘉泰姆
Operates from an Input Battery Voltage Range of0bF嘉泰姆
+1.8V to +28V0bF嘉泰姆
Power-On-Reset Monitoring on VCC Pin0bF嘉泰姆
Excellent Line and Load Transient Responses0bF嘉泰姆
PFM Mode for Increased Light Load Efficiency0bF嘉泰姆
Selectable PWM Frequency from 4 Preset Values0bF嘉泰姆
Integrated MOSFET Drivers0bF嘉泰姆
Integrated Bootstrap Forward P-CH MOSFET0bF嘉泰姆
Adjustable Integrated Soft-Start and Soft-Stop0bF嘉泰姆
Selectable Forced PWM or Automatic PFM/PWM Mode0bF嘉泰姆
Power Good Monitoring0bF嘉泰姆
70% Under-Voltage Protection0bF嘉泰姆
125% Over-Voltage Protection0bF嘉泰姆
Adjustable Current-Limit Protection0bF嘉泰姆
- Using Sense Low-Side MOSFET’s RDS(ON)0bF嘉泰姆
Over-Temperature Protection0bF嘉泰姆
TDFN-10 3x3 Package0bF嘉泰姆
Lead Free and Green Devices Available0bF嘉泰姆
三,应用范围 (Applications)0bF嘉泰姆


Notebook0bF嘉泰姆
Table PC0bF嘉泰姆
Hand-Held Portable0bF嘉泰姆
AIO PC0bF嘉泰姆
四.下载产品资料PDF文档 0bF嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持0bF嘉泰姆

 QQ截图20160419174301.jpg0bF嘉泰姆

五,产品封装图 (Package)0bF嘉泰姆


blob.png0bF嘉泰姆

六.电路原理图0bF嘉泰姆


blob.png0bF嘉泰姆

七,功能概述0bF嘉泰姆


Input Capacitor Selection (Cont.)0bF嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately0bF嘉泰姆

 IOUT/2,where IOUT is the load current. During power-up, the input capacitors have to handle great 0bF嘉泰姆

amount of surge current.For low-duty notebook appliactions, ceramic capacitor is recommended. The0bF嘉泰姆

 capacitors must be connected be-tween the drain of high-side MOSFET and the source of low-side 0bF嘉泰姆

MOSFET with very low-impeadance PCB layout0bF嘉泰姆
MOSFET Selection0bF嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs0bF嘉泰姆

 should be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:0bF嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET0bF嘉泰姆

 driver will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET,0bF嘉泰姆

 the load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the 0bF嘉泰姆

miller capaci-tor through the low-side MOSFET driver sinking current path. This results in much less switching0bF嘉泰姆

 loss of the low-side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the 0bF嘉泰姆

low-side MOSFET will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-verter can reduce power loss. The gate charge for this MOSFET is usually the 0bF嘉泰姆

secondary consideration. The high-side MOSFET does not have this zero voltage switch- ing condition;0bF嘉泰姆

 in addition, because  it conducts for less time compared to the low-side MOSFET, the switching 0bF嘉泰姆

loss tends to be dominant. Priority  should be given to the MOSFETs with less gate charge, so 0bF嘉泰姆

that both the gate driver loss and switching loss  will be minimized.0bF嘉泰姆

The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing0bF嘉泰姆

 transfer capaci-tance (CRSS) and maximum output current requirement. The losses in the 0bF嘉泰姆

MOSFETs have two components:conduction loss and transition loss. For the high-side and 0bF嘉泰姆

low-side MOSFETs, the losses are approximately given by the following equations:0bF嘉泰姆

Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSW0bF嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)0bF嘉泰姆
Where I is the load current OUT0bF嘉泰姆
TC is the temperature dependency of RDS(ON)0bF嘉泰姆
FSW is the switching frequency0bF嘉泰姆
tSW is the switching interval0bF嘉泰姆
D is the duty cycle0bF嘉泰姆
Note that both MOSFETs have conduction losses while the high-side MOSFET includes an additional 0bF嘉泰姆

transition loss.The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. 0bF嘉泰姆

The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted 0bF嘉泰姆

from the “RDS(ON) vs. Temperature” curve of the power MOSFET.0bF嘉泰姆
Layout Consideration0bF嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation 0bF嘉泰姆

of the regulator.With power devices switching at higher frequency, the resulting current transient will 0bF嘉泰姆

cause voltage spike across the interconnecting impedance and parasitic circuit elements. As an example,0bF嘉泰姆

 consider the turn-off transition of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying0bF嘉泰姆

 the full load current. During turn-off,current stops flowing in the MOSFET and is freewheeling by the 0bF嘉泰姆

low side MOSFET and parasitic diode. Any parasitic inductance of the circuit generates a large voltage 0bF嘉泰姆

spike during the switching interval. In general, using short and wide printed circuit traces should0bF嘉泰姆

 minimize interconnect-ing impedances and the magnitude of voltage spike.0bF嘉泰姆
Besides, signal and power grounds are to be kept sepa-rating and finally combined using ground 0bF嘉泰姆

plane construc-tion or single point grounding. The best tie-point between the signal ground and the 0bF嘉泰姆

power ground is at the nega-tive side of the output capacitor on each channel, where there is less 0bF嘉泰姆

noise. Noisy traces beneath the IC are not recommended. Below is a checklist for your layout:0bF嘉泰姆
· Keep the switching nodes (UGATE, LGATE, BOOT,and PHASE) away from sensitive small signal 0bF嘉泰姆

nodes since these nodes are fast moving signals.Therefore, keep traces to these nodes as short as0bF嘉泰姆
possible and there should be no other weak signal traces in parallel with theses traces on any layer.0bF嘉泰姆

Layout Consideration (Cont.)0bF嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak 0bF嘉泰姆

charging and discharging current. The traces from the gate drivers to the MOSFETs (UGATE and 0bF嘉泰姆

LGATE) should be short and wide.0bF嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as 0bF嘉泰姆

possible.Minimizing the impedance with wide layout plane be-tween the two pads reduces the 0bF嘉泰姆

voltage bounce of the node. In addition, the large layout plane between the drain of the 0bF嘉泰姆

MOSFETs (VIN and PHASE nodes) can get better heat sinking.0bF嘉泰姆

The GND is the current sensing circuit reference ground and also the power ground of the 0bF嘉泰姆

LGATE low-side MOSFET. On the other hand, the GND trace should be a separate trace and0bF嘉泰姆

 independently go to the source of the low-side MOSFET. Besides, the cur-rent sense resistor 0bF嘉泰姆

should be close to OCSET pin to avoid parasitic capacitor effect and noise coupling.0bF嘉泰姆

· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. 0bF嘉泰姆

(For example,place the decoupling ceramic capacitor close to the drain of the high-side MOSFET0bF嘉泰姆

 as close as possible.)0bF嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the output0bF嘉泰姆

 bulk capaci-tors should be close to the loads. The input capaci-tor’s ground should be close to the0bF嘉泰姆

 grounds of the output capacitors and low-side MOSFET.0bF嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, 0bF嘉泰姆

FB pin traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).0bF嘉泰姆

 八,相关产品                  更多同类产品...... 0bF嘉泰姆


Switching Regulator >   Buck Controller0bF嘉泰姆

Part_No 0bF嘉泰姆

Package 0bF嘉泰姆

Archi0bF嘉泰姆

tectu0bF嘉泰姆

Phase0bF嘉泰姆

No.of0bF嘉泰姆

PWM0bF嘉泰姆

Output0bF嘉泰姆

Output 0bF嘉泰姆

Current0bF嘉泰姆

(A) 0bF嘉泰姆

Input0bF嘉泰姆

Voltage (V) 0bF嘉泰姆

Reference0bF嘉泰姆

Voltage0bF嘉泰姆

(V) 0bF嘉泰姆

Bias 0bF嘉泰姆

Voltage0bF嘉泰姆

(V) 0bF嘉泰姆

Quiescent0bF嘉泰姆

Current0bF嘉泰姆

(uA) 0bF嘉泰姆

min0bF嘉泰姆

max0bF嘉泰姆

CXSD62730bF嘉泰姆

SOP-140bF嘉泰姆

QSOP-160bF嘉泰姆

QFN4x4-160bF嘉泰姆

VM    0bF嘉泰姆

1   0bF嘉泰姆

1     0bF嘉泰姆

300bF嘉泰姆

2.9    0bF嘉泰姆

13.20bF嘉泰姆

0.90bF嘉泰姆

12     0bF嘉泰姆

80000bF嘉泰姆

CXSD62740bF嘉泰姆

SOP-80bF嘉泰姆

VM   0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

200bF嘉泰姆

2.9  0bF嘉泰姆

13.2 0bF嘉泰姆

0.80bF嘉泰姆

120bF嘉泰姆

50000bF嘉泰姆

CXSD6274C0bF嘉泰姆

SOP-80bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

200bF嘉泰姆

2.90bF嘉泰姆

13.20bF嘉泰姆

0.80bF嘉泰姆

120bF嘉泰姆

50000bF嘉泰姆

CXSD62750bF嘉泰姆

QFN4x4-240bF嘉泰姆

VM0bF嘉泰姆

20bF嘉泰姆

10bF嘉泰姆

600bF嘉泰姆

3.10bF嘉泰姆

13.20bF嘉泰姆

0.60bF嘉泰姆

120bF嘉泰姆

50000bF嘉泰姆

CXSD62760bF嘉泰姆

SOP-80bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

200bF嘉泰姆

2.20bF嘉泰姆

13.20bF嘉泰姆

0.80bF嘉泰姆

5~120bF嘉泰姆

21000bF嘉泰姆

CXSD6276A0bF嘉泰姆

SOP-80bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

200bF嘉泰姆

2.20bF嘉泰姆

13.20bF嘉泰姆

0.80bF嘉泰姆

5~120bF嘉泰姆

21000bF嘉泰姆

CXSD6277/A/B0bF嘉泰姆

SOP8|TSSOP80bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

50bF嘉泰姆

50bF嘉泰姆

13.20bF嘉泰姆

1.25|0.80bF嘉泰姆

5~120bF嘉泰姆

30000bF嘉泰姆

CXSD62780bF嘉泰姆

SOP-80bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

100bF嘉泰姆

3.30bF嘉泰姆

5.50bF嘉泰姆

0.80bF嘉泰姆

50bF嘉泰姆

21000bF嘉泰姆

CXSD6279B0bF嘉泰姆

SOP-140bF嘉泰姆

VM   0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

100bF嘉泰姆

50bF嘉泰姆

13.20bF嘉泰姆

0.80bF嘉泰姆

120bF嘉泰姆

20000bF嘉泰姆

CXSD62800bF嘉泰姆

TSSOP-240bF嘉泰姆

|QFN5x5-320bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

20bF嘉泰姆

200bF嘉泰姆

50bF嘉泰姆

13.20bF嘉泰姆

0.60bF嘉泰姆

5~120bF嘉泰姆

40000bF嘉泰姆

CXSD6281N0bF嘉泰姆

SOP140bF嘉泰姆

QSOP160bF嘉泰姆

QFN-160bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

300bF嘉泰姆

2.90bF嘉泰姆

13.20bF嘉泰姆

0.90bF嘉泰姆

120bF嘉泰姆

40000bF嘉泰姆

CXSD62820bF嘉泰姆

SOP-140bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

300bF嘉泰姆

2.20bF嘉泰姆

13.20bF嘉泰姆

0.60bF嘉泰姆

120bF嘉泰姆

50000bF嘉泰姆

CXSD6282A0bF嘉泰姆

SOP-140bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

300bF嘉泰姆

2.20bF嘉泰姆

13.20bF嘉泰姆

0.60bF嘉泰姆

120bF嘉泰姆

50000bF嘉泰姆

CXSD62830bF嘉泰姆

SOP-140bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

10bF嘉泰姆

250bF嘉泰姆

2.20bF嘉泰姆

13.20bF嘉泰姆

0.80bF嘉泰姆

120bF嘉泰姆

50000bF嘉泰姆

CXSD6284/A0bF嘉泰姆

LQFP7x7 480bF嘉泰姆

TQFN7x7-480bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆

60bF嘉泰姆

0.0150bF嘉泰姆

1.40bF嘉泰姆

6.50bF嘉泰姆

-0bF嘉泰姆

50bF嘉泰姆

18000bF嘉泰姆

CXSD62850bF嘉泰姆

TSSOP-24P0bF嘉泰姆

VM0bF嘉泰姆

10bF嘉泰姆