CXSD62118单相恒定时间同步的PWM控制器驱动N通道mosfet低压芯片组RAM电源
发表时间:2020-04-24
浏览次数:70

目录WE3嘉泰姆

1.产品概述                       2.产品特点WE3嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 WE3嘉泰姆
5.产品封装图                     6.电路原理图                   WE3嘉泰姆
7.功能概述                        8.相关产品WE3嘉泰姆

一,产品概述(General Description)   WE3嘉泰姆


  The CXSD62118 is a single-phase, constant-on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62118 steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.WE3嘉泰姆
  The CXSD62118 provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62118 provides very high efficiency over light to heavy loads with loading-WE3嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.WE3嘉泰姆
  The CXSD62118 is equipped with accurate positive current-limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62118 has a 1ms digital soft-start and built-in an integrated output discharge method for soft-stop. An internal integratedWE3嘉泰姆
soft-start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors with controlled reverse inductor current.WE3嘉泰姆
  The CXSD62118 is available in 10pin TDFN 3x3 package.WE3嘉泰姆
二.产品特点(Features)WE3嘉泰姆


Adjustable Output Voltage from +0.7V to +5.5VWE3嘉泰姆
- 0.7V Reference VoltageWE3嘉泰姆
- ±1% Accuracy Over-TemperatureWE3嘉泰姆
Operates from an Input Battery Voltage Range ofWE3嘉泰姆
+1.8V to +28VWE3嘉泰姆
Power-On-Reset Monitoring on VCC PinWE3嘉泰姆
Excellent Line and Load Transient ResponsesWE3嘉泰姆
PFM Mode for Increased Light Load EfficiencyWE3嘉泰姆
Selectable PWM Frequency from 4 Preset ValuesWE3嘉泰姆
Integrated MOSFET DriversWE3嘉泰姆
Integrated Bootstrap Forward P-CH MOSFETWE3嘉泰姆
Adjustable Integrated Soft-Start and Soft-StopWE3嘉泰姆
Selectable Forced PWM or Automatic PFM/PWM ModeWE3嘉泰姆
Power Good MonitoringWE3嘉泰姆
70% Under-Voltage ProtectionWE3嘉泰姆
125% Over-Voltage ProtectionWE3嘉泰姆
Adjustable Current-Limit ProtectionWE3嘉泰姆
- Using Sense Low-Side MOSFET’s RDS(ON)WE3嘉泰姆
Over-Temperature ProtectionWE3嘉泰姆
TDFN-10 3x3 PackageWE3嘉泰姆
Lead Free and Green Devices AvailableWE3嘉泰姆
三,应用范围 (Applications)WE3嘉泰姆


NotebookWE3嘉泰姆
Table PCWE3嘉泰姆
Hand-Held PortableWE3嘉泰姆
AIO PCWE3嘉泰姆
四.下载产品资料PDF文档 WE3嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持WE3嘉泰姆

 QQ截图20160419174301.jpgWE3嘉泰姆

五,产品封装图 (Package)WE3嘉泰姆


blob.pngWE3嘉泰姆

六.电路原理图WE3嘉泰姆


blob.pngWE3嘉泰姆

七,功能概述WE3嘉泰姆


Input Capacitor Selection (Cont.)WE3嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximatelyWE3嘉泰姆

 IOUT/2,where IOUT is the load current. During power-up, the input capacitors have to handle great WE3嘉泰姆

amount of surge current.For low-duty notebook appliactions, ceramic capacitor is recommended. TheWE3嘉泰姆

 capacitors must be connected be-tween the drain of high-side MOSFET and the source of low-side WE3嘉泰姆

MOSFET with very low-impeadance PCB layoutWE3嘉泰姆
MOSFET SelectionWE3嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETsWE3嘉泰姆

 should be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:WE3嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFETWE3嘉泰姆

 driver will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET,WE3嘉泰姆

 the load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the WE3嘉泰姆

miller capaci-tor through the low-side MOSFET driver sinking current path. This results in much less switchingWE3嘉泰姆

 loss of the low-side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the WE3嘉泰姆

low-side MOSFET will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-verter can reduce power loss. The gate charge for this MOSFET is usually the WE3嘉泰姆

secondary consideration. The high-side MOSFET does not have this zero voltage switch- ing condition;WE3嘉泰姆

 in addition, because  it conducts for less time compared to the low-side MOSFET, the switching WE3嘉泰姆

loss tends to be dominant. Priority  should be given to the MOSFETs with less gate charge, so WE3嘉泰姆

that both the gate driver loss and switching loss  will be minimized.WE3嘉泰姆

The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversingWE3嘉泰姆

 transfer capaci-tance (CRSS) and maximum output current requirement. The losses in the WE3嘉泰姆

MOSFETs have two components:conduction loss and transition loss. For the high-side and WE3嘉泰姆

low-side MOSFETs, the losses are approximately given by the following equations:WE3嘉泰姆

Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWWE3嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)WE3嘉泰姆
Where I is the load current OUTWE3嘉泰姆
TC is the temperature dependency of RDS(ON)WE3嘉泰姆
FSW is the switching frequencyWE3嘉泰姆
tSW is the switching intervalWE3嘉泰姆
D is the duty cycleWE3嘉泰姆
Note that both MOSFETs have conduction losses while the high-side MOSFET includes an additional WE3嘉泰姆

transition loss.The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. WE3嘉泰姆

The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted WE3嘉泰姆

from the “RDS(ON) vs. Temperature” curve of the power MOSFET.WE3嘉泰姆
Layout ConsiderationWE3嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation WE3嘉泰姆

of the regulator.With power devices switching at higher frequency, the resulting current transient will WE3嘉泰姆

cause voltage spike across the interconnecting impedance and parasitic circuit elements. As an example,WE3嘉泰姆

 consider the turn-off transition of the PWM MOSFET. Before turn-off condition, the MOSFET is carryingWE3嘉泰姆

 the full load current. During turn-off,current stops flowing in the MOSFET and is freewheeling by the WE3嘉泰姆

low side MOSFET and parasitic diode. Any parasitic inductance of the circuit generates a large voltage WE3嘉泰姆

spike during the switching interval. In general, using short and wide printed circuit traces shouldWE3嘉泰姆

 minimize interconnect-ing impedances and the magnitude of voltage spike.WE3嘉泰姆
Besides, signal and power grounds are to be kept sepa-rating and finally combined using ground WE3嘉泰姆

plane construc-tion or single point grounding. The best tie-point between the signal ground and the WE3嘉泰姆

power ground is at the nega-tive side of the output capacitor on each channel, where there is less WE3嘉泰姆

noise. Noisy traces beneath the IC are not recommended. Below is a checklist for your layout:WE3嘉泰姆
· Keep the switching nodes (UGATE, LGATE, BOOT,and PHASE) away from sensitive small signal WE3嘉泰姆

nodes since these nodes are fast moving signals.Therefore, keep traces to these nodes as short asWE3嘉泰姆
possible and there should be no other weak signal traces in parallel with theses traces on any layer.WE3嘉泰姆

Layout Consideration (Cont.)WE3嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak WE3嘉泰姆

charging and discharging current. The traces from the gate drivers to the MOSFETs (UGATE and WE3嘉泰姆

LGATE) should be short and wide.WE3嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as WE3嘉泰姆

possible.Minimizing the impedance with wide layout plane be-tween the two pads reduces the WE3嘉泰姆

voltage bounce of the node. In addition, the large layout plane between the drain of the WE3嘉泰姆

MOSFETs (VIN and PHASE nodes) can get better heat sinking.WE3嘉泰姆

The GND is the current sensing circuit reference ground and also the power ground of the WE3嘉泰姆

LGATE low-side MOSFET. On the other hand, the GND trace should be a separate trace andWE3嘉泰姆

 independently go to the source of the low-side MOSFET. Besides, the cur-rent sense resistor WE3嘉泰姆

should be close to OCSET pin to avoid parasitic capacitor effect and noise coupling.WE3嘉泰姆

· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. WE3嘉泰姆

(For example,place the decoupling ceramic capacitor close to the drain of the high-side MOSFETWE3嘉泰姆

 as close as possible.)WE3嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the outputWE3嘉泰姆

 bulk capaci-tors should be close to the loads. The input capaci-tor’s ground should be close to theWE3嘉泰姆

 grounds of the output capacitors and low-side MOSFET.WE3嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, WE3嘉泰姆

FB pin traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).WE3嘉泰姆

 八,相关产品                  更多同类产品...... WE3嘉泰姆


Switching Regulator >   Buck ControllerWE3嘉泰姆

Part_No WE3嘉泰姆

Package WE3嘉泰姆

ArchiWE3嘉泰姆

tectuWE3嘉泰姆

PhaseWE3嘉泰姆

No.ofWE3嘉泰姆

PWMWE3嘉泰姆

OutputWE3嘉泰姆

Output WE3嘉泰姆

CurrentWE3嘉泰姆

(A) WE3嘉泰姆

InputWE3嘉泰姆

Voltage (V) WE3嘉泰姆

ReferenceWE3嘉泰姆

VoltageWE3嘉泰姆

(V) WE3嘉泰姆

Bias WE3嘉泰姆

VoltageWE3嘉泰姆

(V) WE3嘉泰姆

QuiescentWE3嘉泰姆

CurrentWE3嘉泰姆

(uA) WE3嘉泰姆

minWE3嘉泰姆

maxWE3嘉泰姆

CXSD6273WE3嘉泰姆

SOP-14WE3嘉泰姆

QSOP-16WE3嘉泰姆

QFN4x4-16WE3嘉泰姆

VM    WE3嘉泰姆

1   WE3嘉泰姆

1     WE3嘉泰姆

30WE3嘉泰姆

2.9    WE3嘉泰姆

13.2WE3嘉泰姆

0.9WE3嘉泰姆

12     WE3嘉泰姆

8000WE3嘉泰姆

CXSD6274WE3嘉泰姆

SOP-8WE3嘉泰姆

VM   WE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

20WE3嘉泰姆

2.9  WE3嘉泰姆

13.2 WE3嘉泰姆

0.8WE3嘉泰姆

12WE3嘉泰姆

5000WE3嘉泰姆

CXSD6274CWE3嘉泰姆

SOP-8WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

20WE3嘉泰姆

2.9WE3嘉泰姆

13.2WE3嘉泰姆

0.8WE3嘉泰姆

12WE3嘉泰姆

5000WE3嘉泰姆

CXSD6275WE3嘉泰姆

QFN4x4-24WE3嘉泰姆

VMWE3嘉泰姆

2WE3嘉泰姆

1WE3嘉泰姆

60WE3嘉泰姆

3.1WE3嘉泰姆

13.2WE3嘉泰姆

0.6WE3嘉泰姆

12WE3嘉泰姆

5000WE3嘉泰姆

CXSD6276WE3嘉泰姆

SOP-8WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

20WE3嘉泰姆

2.2WE3嘉泰姆

13.2WE3嘉泰姆

0.8WE3嘉泰姆

5~12WE3嘉泰姆

2100WE3嘉泰姆

CXSD6276AWE3嘉泰姆

SOP-8WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

20WE3嘉泰姆

2.2WE3嘉泰姆

13.2WE3嘉泰姆

0.8WE3嘉泰姆

5~12WE3嘉泰姆

2100WE3嘉泰姆

CXSD6277/A/BWE3嘉泰姆

SOP8|TSSOP8WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

5WE3嘉泰姆

5WE3嘉泰姆

13.2WE3嘉泰姆

1.25|0.8WE3嘉泰姆

5~12WE3嘉泰姆

3000WE3嘉泰姆

CXSD6278WE3嘉泰姆

SOP-8WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

10WE3嘉泰姆

3.3WE3嘉泰姆

5.5WE3嘉泰姆

0.8WE3嘉泰姆

5WE3嘉泰姆

2100WE3嘉泰姆

CXSD6279BWE3嘉泰姆

SOP-14WE3嘉泰姆

VM   WE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

10WE3嘉泰姆

5WE3嘉泰姆

13.2WE3嘉泰姆

0.8WE3嘉泰姆

12WE3嘉泰姆

2000WE3嘉泰姆

CXSD6280WE3嘉泰姆

TSSOP-24WE3嘉泰姆

|QFN5x5-32WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

2WE3嘉泰姆

20WE3嘉泰姆

5WE3嘉泰姆

13.2WE3嘉泰姆

0.6WE3嘉泰姆

5~12WE3嘉泰姆

4000WE3嘉泰姆

CXSD6281NWE3嘉泰姆

SOP14WE3嘉泰姆

QSOP16WE3嘉泰姆

QFN-16WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

30WE3嘉泰姆

2.9WE3嘉泰姆

13.2WE3嘉泰姆

0.9WE3嘉泰姆

12WE3嘉泰姆

4000WE3嘉泰姆

CXSD6282WE3嘉泰姆

SOP-14WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

30WE3嘉泰姆

2.2WE3嘉泰姆

13.2WE3嘉泰姆

0.6WE3嘉泰姆

12WE3嘉泰姆

5000WE3嘉泰姆

CXSD6282AWE3嘉泰姆

SOP-14WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

30WE3嘉泰姆

2.2WE3嘉泰姆

13.2WE3嘉泰姆

0.6WE3嘉泰姆

12WE3嘉泰姆

5000WE3嘉泰姆

CXSD6283WE3嘉泰姆

SOP-14WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

1WE3嘉泰姆

25WE3嘉泰姆

2.2WE3嘉泰姆

13.2WE3嘉泰姆

0.8WE3嘉泰姆

12WE3嘉泰姆

5000WE3嘉泰姆

CXSD6284/AWE3嘉泰姆

LQFP7x7 48WE3嘉泰姆

TQFN7x7-48WE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆

6WE3嘉泰姆

0.015WE3嘉泰姆

1.4WE3嘉泰姆

6.5WE3嘉泰姆

-WE3嘉泰姆

5WE3嘉泰姆

1800WE3嘉泰姆

CXSD6285WE3嘉泰姆

TSSOP-24PWE3嘉泰姆

VMWE3嘉泰姆

1WE3嘉泰姆