CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
发表时间:2020-04-22
浏览次数:132

目录QAA嘉泰姆

1.产品概述                       2.产品特点QAA嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 QAA嘉泰姆
5.产品封装图                     6.电路原理图                   QAA嘉泰姆
7.功能概述                        8.相关产品QAA嘉泰姆

一,产品概述(General Description)    QAA嘉泰姆


  The CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.QAA嘉泰姆
  The CXSD62102A provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62102A provides very high efficiency over light to heavy loads with loading-QAA嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.QAA嘉泰姆
  The CXSD62102A is equipped with accurate positive current limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62102A has a 1ms digital soft start and built-in an integrated output discharge device for soft stop. An internal integrated soft-QAA嘉泰姆
start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors.QAA嘉泰姆
  The CXSD62102A is available in 16pin TQFN3x3-16 package respectively.QAA嘉泰姆
二.产品特点(Features)QAA嘉泰姆


Adjustable Output Voltage from +0.6V to +3.3VQAA嘉泰姆
- 0.6V Reference VoltageQAA嘉泰姆
- ±0.6% Accuracy Over-TemperatureQAA嘉泰姆
Operates from An Input Battery Voltage Range ofQAA嘉泰姆
+1.8V to +28VQAA嘉泰姆
REFIN Function for Over-clocking Purpose fromQAA嘉泰姆
0.5V~2.5V rangeQAA嘉泰姆
Power-On-Reset Monitoring on VCC pinQAA嘉泰姆
Excellent line and load transient responsesQAA嘉泰姆
PFM mode for increased light load efficiencyQAA嘉泰姆
Programmable PWM Frequency from 100kHz to 500kHzQAA嘉泰姆
Built in 30A Output current driving capabilityQAA嘉泰姆
Integrate MOSFET DriversQAA嘉泰姆
Integrated Bootstrap Forward P-CH MOSFETQAA嘉泰姆
Power Good MonitoringQAA嘉泰姆
70% Under-Voltage ProtectionQAA嘉泰姆
125% Over-Voltage ProtectionQAA嘉泰姆
TQFN3x3-16 PackageQAA嘉泰姆
Lead Free and Green Devices Available (RoHS Compliant)QAA嘉泰姆
三,应用范围 (Applications)QAA嘉泰姆


NotebookQAA嘉泰姆
Table PCQAA嘉泰姆
Hand-Held PortableQAA嘉泰姆
AIO PCQAA嘉泰姆

四.下载产品资料PDF文档 QAA嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持QAA嘉泰姆

 QQ截图20160419174301.jpgQAA嘉泰姆

五,产品封装图 (Package)QAA嘉泰姆


QAA嘉泰姆

六.电路原理图QAA嘉泰姆


blob.pngQAA嘉泰姆

七,功能概述QAA嘉泰姆


Input Capacitor Selection (Cont.)QAA嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,QAA嘉泰姆
where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.QAA嘉泰姆
For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-QAA嘉泰姆
tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout.QAA嘉泰姆
MOSFET SelectionQAA嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs shouldQAA嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:QAA嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driverQAA嘉泰姆
will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET, theQAA嘉泰姆
load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-QAA嘉泰姆
tor through the low-side MOSFET driver sinking current path. This results in much less switching loss of the low-QAA嘉泰姆
side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFETQAA嘉泰姆
will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-QAA嘉泰姆
verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. TheQAA嘉泰姆
high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-QAA嘉泰姆
pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to theQAA嘉泰姆
MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.QAA嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-QAA嘉泰姆
tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:QAA嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximatelyQAA嘉泰姆
given by the following equations:QAA嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWQAA嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)QAA嘉泰姆
Where TC is the temperature dependency of RDS(ON)FSW is the switching frequencyQAA嘉泰姆
tSW is the switching interval D is the duty cycle Note that both MOSFETs have conduction losses whileQAA嘉泰姆
the high-side MOSFET includes an additional transition loss. The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFETQAA嘉泰姆
Layout ConsiderationQAA嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.QAA嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike acrossQAA嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transitionQAA嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,QAA嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasiticQAA嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short andQAA嘉泰姆
wide printed circuit traces should minimize interconnect- ing impedances and the magnitude of voltage spike.QAA嘉泰姆
Besides, signal and power grounds are to be kept sepa- rating and finally combined using ground plane construc-QAA嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-QAA嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are notQAA嘉泰姆
recommended. Below is a checklist for your layout:· Keep the switching nodes (UGATE, LGATE, BOOT,QAA嘉泰姆
and PHASE) away from sensitive small signal nodes since these nodes are fast moving signals.QAA嘉泰姆
Therefore, keep traces to these nodes as short asQAA嘉泰姆
side MOSFET. On the other hand, the PGND trace should be a separate trace and independently go toQAA嘉泰姆
the source of the low-side MOSFET. Besides, the cur-rent sense resistor should be close to OCSET pin toQAA嘉泰姆
avoid parasitic capacitor effect and noise coupling.QAA嘉泰姆
· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. (For example,QAA嘉泰姆
place the decoupling ceramic capacitor close to the drain of the high-side MOSFET as close as possible.)QAA嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the output bulk capaci-QAA嘉泰姆
tors should be close to the loads. The input capaci-tor’s ground should be close to the grounds of theQAA嘉泰姆
output capacitors and low-side MOSFET.QAA嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, FB pinQAA嘉泰姆
traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).QAA嘉泰姆

Layout Consideration (Cont.)QAA嘉泰姆

possible and there should be no other weak signal traces in parallel with theses traces on any layer.QAA嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak charging andQAA嘉泰姆
discharging current. The traces from the gate drivers to the MOSFETs (UGATE and LGATE) should be shortQAA嘉泰姆
and wide.QAA嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as possible.QAA嘉泰姆
Minimizing the impedance with wide layout plane be-tween the two pads reduces the voltage bounce ofQAA嘉泰姆
the drain of the MOSFETs (VIN and PHASE nodes) can get better heat sinking.QAA嘉泰姆

· The PGND is the current sensing circuit reference ground and also the power ground of the LGATE low-QAA嘉泰姆

八,相关产品             更多同类产品...... QAA嘉泰姆


Switching Regulator >   Buck ControllerQAA嘉泰姆

Part_No QAA嘉泰姆

Package QAA嘉泰姆

ArchiQAA嘉泰姆

tectuQAA嘉泰姆

PhaseQAA嘉泰姆

No.ofQAA嘉泰姆

PWMQAA嘉泰姆

OutputQAA嘉泰姆

Output QAA嘉泰姆

CurrentQAA嘉泰姆

(A) QAA嘉泰姆

InputQAA嘉泰姆

Voltage (V) QAA嘉泰姆

ReferenceQAA嘉泰姆

VoltageQAA嘉泰姆

(V) QAA嘉泰姆

Bias QAA嘉泰姆

VoltageQAA嘉泰姆

(V) QAA嘉泰姆

QuiescentQAA嘉泰姆

CurrentQAA嘉泰姆

(uA) QAA嘉泰姆

minQAA嘉泰姆

maxQAA嘉泰姆

CXSD6273QAA嘉泰姆

SOP-14QAA嘉泰姆

QSOP-16QAA嘉泰姆

QFN4x4-16QAA嘉泰姆

VM    QAA嘉泰姆

1   QAA嘉泰姆

1     QAA嘉泰姆

30QAA嘉泰姆

2.9    QAA嘉泰姆

13.2QAA嘉泰姆

0.9QAA嘉泰姆

12     QAA嘉泰姆

8000QAA嘉泰姆

CXSD6274QAA嘉泰姆

SOP-8QAA嘉泰姆

VM   QAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

20QAA嘉泰姆

2.9  QAA嘉泰姆

13.2 QAA嘉泰姆

0.8QAA嘉泰姆

12QAA嘉泰姆

5000QAA嘉泰姆

CXSD6274CQAA嘉泰姆

SOP-8QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

20QAA嘉泰姆

2.9QAA嘉泰姆

13.2QAA嘉泰姆

0.8QAA嘉泰姆

12QAA嘉泰姆

5000QAA嘉泰姆

CXSD6275QAA嘉泰姆

QFN4x4-24QAA嘉泰姆

VMQAA嘉泰姆

2QAA嘉泰姆

1QAA嘉泰姆

60QAA嘉泰姆

3.1QAA嘉泰姆

13.2QAA嘉泰姆

0.6QAA嘉泰姆

12QAA嘉泰姆

5000QAA嘉泰姆

CXSD6276QAA嘉泰姆

SOP-8QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

20QAA嘉泰姆

2.2QAA嘉泰姆

13.2QAA嘉泰姆

0.8QAA嘉泰姆

5~12QAA嘉泰姆

2100QAA嘉泰姆

CXSD6276AQAA嘉泰姆

SOP-8QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

20QAA嘉泰姆

2.2QAA嘉泰姆

13.2QAA嘉泰姆

0.8QAA嘉泰姆

5~12QAA嘉泰姆

2100QAA嘉泰姆

CXSD6277/A/BQAA嘉泰姆

SOP8|TSSOP8QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

5QAA嘉泰姆

5QAA嘉泰姆

13.2QAA嘉泰姆

1.25|0.8QAA嘉泰姆

5~12QAA嘉泰姆

3000QAA嘉泰姆

CXSD6278QAA嘉泰姆

SOP-8QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

10QAA嘉泰姆

3.3QAA嘉泰姆

5.5QAA嘉泰姆

0.8QAA嘉泰姆

5QAA嘉泰姆

2100QAA嘉泰姆

CXSD6279BQAA嘉泰姆

SOP-14QAA嘉泰姆

VM   QAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

10QAA嘉泰姆

5QAA嘉泰姆

13.2QAA嘉泰姆

0.8QAA嘉泰姆

12QAA嘉泰姆

2000QAA嘉泰姆

CXSD6280QAA嘉泰姆

TSSOP-24QAA嘉泰姆

|QFN5x5-32QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

2QAA嘉泰姆

20QAA嘉泰姆

5QAA嘉泰姆

13.2QAA嘉泰姆

0.6QAA嘉泰姆

5~12QAA嘉泰姆

4000QAA嘉泰姆

CXSD6281NQAA嘉泰姆

SOP14QAA嘉泰姆

QSOP16QAA嘉泰姆

QFN-16QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

30QAA嘉泰姆

2.9QAA嘉泰姆

13.2QAA嘉泰姆

0.9QAA嘉泰姆

12QAA嘉泰姆

4000QAA嘉泰姆

CXSD6282QAA嘉泰姆

SOP-14QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

30QAA嘉泰姆

2.2QAA嘉泰姆

13.2QAA嘉泰姆

0.6QAA嘉泰姆

12QAA嘉泰姆

5000QAA嘉泰姆

CXSD6282AQAA嘉泰姆

SOP-14QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

30QAA嘉泰姆

2.2QAA嘉泰姆

13.2QAA嘉泰姆

0.6QAA嘉泰姆

12QAA嘉泰姆

5000QAA嘉泰姆

CXSD6283QAA嘉泰姆

SOP-14QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

1QAA嘉泰姆

25QAA嘉泰姆

2.2QAA嘉泰姆

13.2QAA嘉泰姆

0.8QAA嘉泰姆

12QAA嘉泰姆

5000QAA嘉泰姆

CXSD6284/AQAA嘉泰姆

LQFP7x7 48QAA嘉泰姆

TQFN7x7-48QAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

6QAA嘉泰姆

0.015QAA嘉泰姆

1.4QAA嘉泰姆

6.5QAA嘉泰姆

-QAA嘉泰姆

5QAA嘉泰姆

1800QAA嘉泰姆

CXSD6285QAA嘉泰姆

TSSOP-24PQAA嘉泰姆

VMQAA嘉泰姆

1QAA嘉泰姆

2QAA嘉泰姆

20QAA嘉泰姆

2.97QAA嘉泰姆

5.5QAA嘉泰姆

0.8QAA嘉泰姆

5~12QAA嘉泰姆

5000QAA嘉泰姆

 QAA嘉泰姆