单相定时同步的PWM控制器CXSD62102驱动N通道mosfet瞬态响应和准确的直流电压以PFM或PWM模式输出
发表时间:2020-04-22
浏览次数:78

目录oVL嘉泰姆

1.产品概述                       2.产品特点oVL嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 oVL嘉泰姆
5.产品封装图                     6.电路原理图                   oVL嘉泰姆
7.功能概述                        8.相关产品oVL嘉泰姆

一,产品概述(General Description)         oVL嘉泰姆
            The CXSD62102 is a single-phase, constant on-time, synchronous PWMoVL嘉泰姆
controller, which drives N-channel MOSFETs. The CXSD62102 steps down highoVL嘉泰姆
voltage to generate low-voltage chipset or RAM supplies in notebook computers.oVL嘉泰姆
The CXSD62102 provides excellent transient response and accurate DC voltageoVL嘉泰姆
output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), theCXSD62102 provides very high efficiency over light to heavy loads with loading-oVL嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly atoVL嘉泰姆
constant frequency for low-noise requirements. CXSD62102 is built in remoteoVL嘉泰姆
sense function for applications that require remote sense.The CXSD62102 isoVL嘉泰姆
equipped with accurate positive current limit, output under-voltage, and outputoVL嘉泰姆
over-voltage protections, perfect for NB applications. The Power-On-ResetoVL嘉泰姆
function monitors the voltage on VCC to prevent wrong operation duringoVL嘉泰姆
power-on. The CXSD62102 has a 1ms digital soft start and built-in an integratedoVL嘉泰姆
output discharge device for soft stop. An internal integrated soft-start ramps upoVL嘉泰姆
the output voltage with programmable slew rate to reduce the start-up current.oVL嘉泰姆
A soft-stop function actively discharges the output capacitors.oVL嘉泰姆
       The CXSD62102 is available in 16pin TQFN3x3-16 package respectively.oVL嘉泰姆
二.产品特点(Features)oVL嘉泰姆
1.)Adjustable Output Voltage from +0.6V to +3.3VoVL嘉泰姆
      - 0.6V Reference VoltageoVL嘉泰姆
      - ±0.6% Accuracy Over-TemperatureoVL嘉泰姆
2.)Operates from An Input Battery Voltage Range of +1.8V to +28VoVL嘉泰姆
3.)Remote Feedback Sense for Excellent Output VoltageoVL嘉泰姆
4.)REFIN Function for Over-clocking Purpose from 0.5V~2.5V rangeoVL嘉泰姆
5.)Power-On-Reset Monitoring on VCC pinoVL嘉泰姆
6.)Excellent line and load transient responsesoVL嘉泰姆
7.)PFM mode for increased light load efficiencyoVL嘉泰姆
8.)Programmable PWM Frequency from 100kHz to 500kHzoVL嘉泰姆
9.)Selectable Forced PWM or automatic PFM/PWM modeoVL嘉泰姆
10.)Built in 30A Output current driving capabilityIntegrate MOSFET DriversoVL嘉泰姆
11.)Integrated Bootstrap Forward P-CH MOSFEToVL嘉泰姆
12.)Adjustable Integrated Soft-Start and Soft-Stop Power Good MonitoringoVL嘉泰姆
13.)70% Under-Voltage ProtectionoVL嘉泰姆
14.)125% Over-Voltage Protection TQFN3x3-16 PackageoVL嘉泰姆
15.)Lead Free and Green Devices AvailableoVL嘉泰姆
三,应用范围 (Applications)oVL嘉泰姆
NotebookoVL嘉泰姆
Table PCoVL嘉泰姆
Hand-Held PortableoVL嘉泰姆
AIO PCoVL嘉泰姆
四.下载产品资料PDF文档 oVL嘉泰姆

需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持oVL嘉泰姆

 QQ截图20160419174301.jpgoVL嘉泰姆

五,产品封装图 (Package)oVL嘉泰姆

blob.pngoVL嘉泰姆

六.电路原理图oVL嘉泰姆


blob.pngoVL嘉泰姆
blob.pngoVL嘉泰姆

七,功能概述oVL嘉泰姆


Input Capacitor Selection (Cont.)oVL嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout. oVL嘉泰姆
MOSFET SelectionoVL嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs shouldoVL嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driver will not charge the miller capacitor of this MOSFET.oVL嘉泰姆
In the turning off process of the low-side MOSFET, the load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-tor through the low-side MOSFET driver sinking current path. This results in much less switchingoVL嘉泰姆
loss of the low-side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFET will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. The high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to the MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.oVL嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:oVL嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximatelyoVL嘉泰姆
given by the following equations:oVL嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWoVL嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D) is the load current TC is the temperature dependency of RDS(ON)oVL嘉泰姆
FSW is the switching frequency tSW is the switching interval D is the duty cycleNote that both MOSFETs have conduction losses while the high-side MOSFET includes an additional transition loss.The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFET.oVL嘉泰姆
Layout ConsiderationoVL嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.oVL嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike acrossoVL嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transitionoVL嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,oVL嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasiticoVL嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short andoVL嘉泰姆
wide printed circuit traces should minimize interconnect-ing impedances and the magnitude of voltage spike.oVL嘉泰姆
Besides, signal and power grounds are to be kept sepa-rating and finally combined using ground plane construc-oVL嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-oVL嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are notoVL嘉泰姆

八,相关产品                更多同类产品......oVL嘉泰姆


Switching Regulator >   Buck ControlleroVL嘉泰姆

Part_No oVL嘉泰姆

Package oVL嘉泰姆

ArchioVL嘉泰姆

tectuoVL嘉泰姆

PhaseoVL嘉泰姆

No.ofoVL嘉泰姆

PWMoVL嘉泰姆

OutputoVL嘉泰姆

Output oVL嘉泰姆

CurrentoVL嘉泰姆

(A) oVL嘉泰姆

InputoVL嘉泰姆

Voltage (V) oVL嘉泰姆

ReferenceoVL嘉泰姆

VoltageoVL嘉泰姆

(V) oVL嘉泰姆

Bias oVL嘉泰姆

VoltageoVL嘉泰姆

(V) oVL嘉泰姆

QuiescentoVL嘉泰姆

CurrentoVL嘉泰姆

(uA) oVL嘉泰姆

minoVL嘉泰姆

maxoVL嘉泰姆

CXSD6273oVL嘉泰姆

SOP-14oVL嘉泰姆

QSOP-16oVL嘉泰姆

QFN4x4-16oVL嘉泰姆

VM    oVL嘉泰姆

1   oVL嘉泰姆

1     oVL嘉泰姆

30oVL嘉泰姆

2.9    oVL嘉泰姆

13.2oVL嘉泰姆

0.9oVL嘉泰姆

12     oVL嘉泰姆

8000oVL嘉泰姆

CXSD6274oVL嘉泰姆

SOP-8oVL嘉泰姆

VM   oVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

20oVL嘉泰姆

2.9  oVL嘉泰姆

13.2 oVL嘉泰姆

0.8oVL嘉泰姆

12oVL嘉泰姆

5000oVL嘉泰姆

CXSD6274CoVL嘉泰姆

SOP-8oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

20oVL嘉泰姆

2.9oVL嘉泰姆

13.2oVL嘉泰姆

0.8oVL嘉泰姆

12oVL嘉泰姆

5000oVL嘉泰姆

CXSD6275oVL嘉泰姆

QFN4x4-24oVL嘉泰姆

VMoVL嘉泰姆

2oVL嘉泰姆

1oVL嘉泰姆

60oVL嘉泰姆

3.1oVL嘉泰姆

13.2oVL嘉泰姆

0.6oVL嘉泰姆

12oVL嘉泰姆

5000oVL嘉泰姆

CXSD6276oVL嘉泰姆

SOP-8oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

20oVL嘉泰姆

2.2oVL嘉泰姆

13.2oVL嘉泰姆

0.8oVL嘉泰姆

5~12oVL嘉泰姆

2100oVL嘉泰姆

CXSD6276AoVL嘉泰姆

SOP-8oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

20oVL嘉泰姆

2.2oVL嘉泰姆

13.2oVL嘉泰姆

0.8oVL嘉泰姆

5~12oVL嘉泰姆

2100oVL嘉泰姆

CXSD6277/A/BoVL嘉泰姆

SOP8|TSSOP8oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

5oVL嘉泰姆

5oVL嘉泰姆

13.2oVL嘉泰姆

1.25|0.8oVL嘉泰姆

5~12oVL嘉泰姆

3000oVL嘉泰姆

CXSD6278oVL嘉泰姆

SOP-8oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

10oVL嘉泰姆

3.3oVL嘉泰姆

5.5oVL嘉泰姆

0.8oVL嘉泰姆

5oVL嘉泰姆

2100oVL嘉泰姆

CXSD6279BoVL嘉泰姆

SOP-14oVL嘉泰姆

VM   oVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

10oVL嘉泰姆

5oVL嘉泰姆

13.2oVL嘉泰姆

0.8oVL嘉泰姆

12oVL嘉泰姆

2000oVL嘉泰姆

CXSD6280oVL嘉泰姆

TSSOP-24oVL嘉泰姆

|QFN5x5-32oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

2oVL嘉泰姆

20oVL嘉泰姆

5oVL嘉泰姆

13.2oVL嘉泰姆

0.6oVL嘉泰姆

5~12oVL嘉泰姆

4000oVL嘉泰姆

CXSD6281NoVL嘉泰姆

SOP14oVL嘉泰姆

QSOP16oVL嘉泰姆

QFN-16oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

30oVL嘉泰姆

2.9oVL嘉泰姆

13.2oVL嘉泰姆

0.9oVL嘉泰姆

12oVL嘉泰姆

4000oVL嘉泰姆

CXSD6282oVL嘉泰姆

SOP-14oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

30oVL嘉泰姆

2.2oVL嘉泰姆

13.2oVL嘉泰姆

0.6oVL嘉泰姆

12oVL嘉泰姆

5000oVL嘉泰姆

CXSD6282AoVL嘉泰姆

SOP-14oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

30oVL嘉泰姆

2.2oVL嘉泰姆

13.2oVL嘉泰姆

0.6oVL嘉泰姆

12oVL嘉泰姆

5000oVL嘉泰姆

CXSD6283oVL嘉泰姆

SOP-14oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

25oVL嘉泰姆

2.2oVL嘉泰姆

13.2oVL嘉泰姆

0.8oVL嘉泰姆

12oVL嘉泰姆

5000oVL嘉泰姆

CXSD6284/AoVL嘉泰姆

LQFP7x7 48oVL嘉泰姆

TQFN7x7-48oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

6oVL嘉泰姆

0.015oVL嘉泰姆

1.4oVL嘉泰姆

6.5oVL嘉泰姆

-oVL嘉泰姆

5oVL嘉泰姆

1800oVL嘉泰姆

CXSD6285oVL嘉泰姆

TSSOP-24PoVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

2oVL嘉泰姆

20oVL嘉泰姆

2.97oVL嘉泰姆

5.5oVL嘉泰姆

0.8oVL嘉泰姆

5~12oVL嘉泰姆

5000oVL嘉泰姆

CXSD6286oVL嘉泰姆

SOP-14oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆

10oVL嘉泰姆

5oVL嘉泰姆

13.2oVL嘉泰姆

0.8oVL嘉泰姆

12oVL嘉泰姆

3000oVL嘉泰姆

CXSD6287oVL嘉泰姆

SOP-8-P|DIP-8oVL嘉泰姆

VMoVL嘉泰姆

1oVL嘉泰姆

1oVL嘉泰姆