CXSD6289两个同步降压型脉宽调制控制器脉冲宽度调制控制器设计用于同步驱动两个N通道mosfet buck拓扑
发表时间:2020-04-22
浏览次数:101

目录HNq嘉泰姆

1.产品概述                       2.产品特点HNq嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 HNq嘉泰姆
5.产品封装图                     6.电路原理图                   HNq嘉泰姆
7.功能概述                        8.相关产品HNq嘉泰姆

一,产品概述(General Description)      HNq嘉泰姆


          The CXSD6289 has two synchronous buck PWM control-lers with highHNq嘉泰姆
precision internal references voltage to of-fer accurate outputs. The PWMHNq嘉泰姆
controllers are designed to drive two N-channel MOSFETs in synchronousHNq嘉泰姆
buck topology. The device requires 12V and 5V power supplies.If the 5VHNq嘉泰姆
supply is not available, the device can offer an optional shunt regulatorHNq嘉泰姆
5.8V for 5V supply.Both outputs have independent soft-start and enableHNq嘉泰姆
func-tions combined on the SS/EN pin. Connecting a capaci-tor from eachHNq嘉泰姆
SS/EN pin to the ground for setting the soft-start time, and pulling the SS/ENHNq嘉泰姆
pin voltage below 1V to disable regulator. The device also offers 180°phaseHNq嘉泰姆
shift function between OUT1 and OUT2.The default switching frequency isHNq嘉泰姆
300kHz (keep the FS pin open or short to GND), and the device also providesHNq嘉泰姆
the programmable switching frequency function to ad-just the switching frequencyHNq嘉泰姆
from 70kHz to 800kHz. Con-necting a resistor from FS pin to GND increases theHNq嘉泰姆
switching frequency. Conversely, connecting a resistor from FS pin to VCC12HNq嘉泰姆
decreases the switching frequency.There is no current sensing or under-voltageHNq嘉泰姆
sensing on the CXSD6289. However, it provides a simple short-circuit protection by monitoring the COMP1 pin and COMP2 pin for over-voltage. When any of two pinsHNq嘉泰姆
exceed their trip point and the condition keeps for 1-2 internal clock cycles (3-6us atHNq嘉泰姆
300kHz), all regulators are latched off.HNq嘉泰姆
二.产品特点(Features)HNq嘉泰姆


1.)Two Synchronous Buck Converters(OUT1,OUT2)HNq嘉泰姆
2.)Converter Input Voltage Range up to 12VHNq嘉泰姆
3.)0.6V Reference for OUT1 with 0.8% AccuracyHNq嘉泰姆
4.)3.3V Reference for OUT2 with 0.8% AccuracyHNq嘉泰姆
5.)Both Outputs have Independent Soft-Start andHNq嘉泰姆
    Enable FunctionsHNq嘉泰姆
6.)Internal 300kHz Oscillator and ProgrammableHNq嘉泰姆
    Frequency Range from 70 kHz to 800kHzHNq嘉泰姆
7.)180 Degrees Phase Shift etween OUT1 and OUT2HNq嘉泰姆
8.)Short-Circuit ProtectionHNq嘉泰姆
9.)Thermally Enhanced SOP-20 PackageHNq嘉泰姆
10.)Lead Free and Green Devices AvailableHNq嘉泰姆
(RoHS Compliant)HNq嘉泰姆
三,应用范围 (Applications)HNq嘉泰姆


Graphic CardsHNq嘉泰姆
Low-Voltage Distributed Power SuppliesHNq嘉泰姆
SMPS ApplicationHNq嘉泰姆
四.下载产品资料PDF文档 HNq嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持HNq嘉泰姆

 QQ截图20160419174301.jpgHNq嘉泰姆

五,产品封装图 (Package)HNq嘉泰姆
blob.pngHNq嘉泰姆

六.电路原理图HNq嘉泰姆


blob.pngHNq嘉泰姆
七,功能概述HNq嘉泰姆


Output Inductor Selection (Cont.)HNq嘉泰姆
Where Fs is the switching frequency of the regulator. Al-though increase the inductor value and frequencyHNq嘉泰姆
reduce the ripple current and voltage, but there is a tradeoff ex-ists between the inductor’s ripple current andHNq嘉泰姆
the regula-tor load transient response time.A smaller inductor will give the regulator a faster load transientHNq嘉泰姆
response at the expense of higher ripple current.Increasing the switching frequency (FS) also reduces theHNq嘉泰姆
ripple current and voltage, but it will increase the switch-ing loss of the MOSFET and the power dissipationHNq嘉泰姆
of the converter. The maximum ripple current occurs at the maximum input voltage. A good starting point isHNq嘉泰姆
to choose the ripple current to be approximately 30% of the maxi-mum output current.Once the inductanceHNq嘉泰姆
value has been chosen, select an inductor that is capable of carrying the required peak cur-rent without goingHNq嘉泰姆
into saturation. In some types of inductors, especially core that is made of ferrite, the ripple current will increaseHNq嘉泰姆
abruptly when it saturates. This will result in a larger output ripple voltage.HNq嘉泰姆
Output Capacitor SelectionHNq嘉泰姆
Higher Capacitor value and lower ESR reduce the output ripple and the load transient drop. Therefore select highHNq嘉泰姆
performance low ESR capacitors that are intended for switching regulator applications. In some applications,HNq嘉泰姆
multiple capacitors have to be parallel to achieve the de-sired ESR value. A small decoupling capacitor in parallelHNq嘉泰姆
for bypassing the noise is also recommended, and the voltage rating of the output capacitors are also must beHNq嘉泰姆
considered. If tantalum capacitors are used, make sure they are surge tested by the manufactures. If in doubt,HNq嘉泰姆
consult the capacitors manufacturer.HNq嘉泰姆
Input Capacitor SelectionHNq嘉泰姆
The input capacitor is chosen based on the voltage rating and the RMS current rating. For reliable operation, HNq嘉泰姆

select the capacitor voltage rating to be at least 1.3 times higher than the maximum input voltage.HNq嘉泰姆
The maximum RMS current rating requirement is approxi-mately IOUT/2, where IOUT is the load current. HNq嘉泰姆

During power up, the input capacitors have to handle large amount of surge current. If tantalum capacitors HNq嘉泰姆

are used, make sure they are surge tested by the manufactures. If in doubt, consult the capacitors HNq嘉泰姆

manufacturer. For high frequency decoupling, a ceramic capacitor 1uF can be connected between the HNq嘉泰姆

drain of upper MOSFET and the source of lower MOSFETHNq嘉泰姆
MOSFET SelectionHNq嘉泰姆
The selection of the N-channel power MOSFETs are de-termined by the RDS(ON), reverse transfer HNq嘉泰姆

capacitance (CRSS) and maximum output current requirement. The losses in the MOSFETs have HNq嘉泰姆

two components: conduction loss and transition loss. For the upper and lower MOSFET, the HNq嘉泰姆

losses are approximately given by the following :HNq嘉泰姆
PUPPER=IOUT(1+TC)(RDS(ON))D+(0.5)(IOUT)(VIN)(tSW)FSHNq嘉泰姆
PLOWER=IOUT(1+TC)(RDS(ON))(1-D)HNq嘉泰姆
Where I is the load current OUT TC is the temperature dependency of RDS(ON) F is the switchingHNq嘉泰姆

 frequency St is the switching interval sw D is the duty cycle Note that both MOSFETs have HNq嘉泰姆

conduction losses while the upper MOSFET include an additional transition loss.The switching HNq嘉泰姆

internal, tsw, is a function of the reverse transfer capacitance CRSS. The (1+TC) term is to HNq嘉泰姆

factor in the temperature depen-dency of the RDS(ON) and can be extracted from the “RDS(ON)HNq嘉泰姆
vs Temperature” curve of the power MOSFET.HNq嘉泰姆
Short Circuit ProtectionHNq嘉泰姆
The CXSD6289 provides a simple short circuit protection function, and it is not easy to predict itsHNq嘉泰姆

 performance, since many factors can affect how well it works. Therefore, the limitations and HNq嘉泰姆

suggestions of this method must be pro-vided for users to understand how to work it well.TheHNq嘉泰姆

 short circuit protection was not designed to work for the output in initial short condition. In this HNq嘉泰姆

case, the short circuit protection may not work, and damage the MOSFETs. If the circuit still works,HNq嘉泰姆

 remove the short can cause an inductive kick on the phase pin, and it may damage the IC and HNq嘉泰姆

MOSFETs.  If the resistance of the short is not low enough to cause protection, the regulator willHNq嘉泰姆

 work as the load hasHNq嘉泰姆

Short Circuit Protection (Cont.)HNq嘉泰姆
increased, and continue to regulate up until the MOSFETs is damaged. The resistance of the shortHNq嘉泰姆

 should include wiring, PCB traces, contact resistances, and all of the return paths.The higher duty HNq嘉泰姆

cycle will give a higher COMP voltage level, and it is easy to touch the trip point. The compensa-HNq嘉泰姆
tion components also affect the response of COMP voltage; smaller caps may give a faster response.HNq嘉泰姆
The output current has faster rising time during short;the COMP pin will have a sharp rise. However,HNq嘉泰姆

 if the cur-rent rises too fast, it may cause a false trip. The output capacitance and its ESR can affectHNq嘉泰姆

 the rising time of the current during short.HNq嘉泰姆

八,相关产品                 更多同类产品......HNq嘉泰姆


Switching Regulator >   Buck ControllerHNq嘉泰姆

Part_No HNq嘉泰姆

Package HNq嘉泰姆

ArchiHNq嘉泰姆

tectuHNq嘉泰姆

PhaseHNq嘉泰姆

No.ofHNq嘉泰姆

PWMHNq嘉泰姆

OutputHNq嘉泰姆

Output HNq嘉泰姆

CurrentHNq嘉泰姆

(A) HNq嘉泰姆

InputHNq嘉泰姆

Voltage (V) HNq嘉泰姆

ReferenceHNq嘉泰姆

VoltageHNq嘉泰姆

(V) HNq嘉泰姆

Bias HNq嘉泰姆

VoltageHNq嘉泰姆

(V) HNq嘉泰姆

QuiescentHNq嘉泰姆

CurrentHNq嘉泰姆

(uA) HNq嘉泰姆

minHNq嘉泰姆

maxHNq嘉泰姆

CXSD6273HNq嘉泰姆

SOP-14HNq嘉泰姆

QSOP-16HNq嘉泰姆

QFN4x4-16HNq嘉泰姆

VM    HNq嘉泰姆

1   HNq嘉泰姆

1     HNq嘉泰姆

30HNq嘉泰姆

2.9    HNq嘉泰姆

13.2HNq嘉泰姆

0.9HNq嘉泰姆

12     HNq嘉泰姆

8000HNq嘉泰姆

CXSD6274HNq嘉泰姆

SOP-8HNq嘉泰姆

VM   HNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

20HNq嘉泰姆

2.9  HNq嘉泰姆

13.2 HNq嘉泰姆

0.8HNq嘉泰姆

12HNq嘉泰姆

5000HNq嘉泰姆

CXSD6274CHNq嘉泰姆

SOP-8HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

20HNq嘉泰姆

2.9HNq嘉泰姆

13.2HNq嘉泰姆

0.8HNq嘉泰姆

12HNq嘉泰姆

5000HNq嘉泰姆

CXSD6275HNq嘉泰姆

QFN4x4-24HNq嘉泰姆

VMHNq嘉泰姆

2HNq嘉泰姆

1HNq嘉泰姆

60HNq嘉泰姆

3.1HNq嘉泰姆

13.2HNq嘉泰姆

0.6HNq嘉泰姆

12HNq嘉泰姆

5000HNq嘉泰姆

CXSD6276HNq嘉泰姆

SOP-8HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

20HNq嘉泰姆

2.2HNq嘉泰姆

13.2HNq嘉泰姆

0.8HNq嘉泰姆

5~12HNq嘉泰姆

2100HNq嘉泰姆

CXSD6276AHNq嘉泰姆

SOP-8HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

20HNq嘉泰姆

2.2HNq嘉泰姆

13.2HNq嘉泰姆

0.8HNq嘉泰姆

5~12HNq嘉泰姆

2100HNq嘉泰姆

CXSD6277/A/BHNq嘉泰姆

SOP8|TSSOP8HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

5HNq嘉泰姆

5HNq嘉泰姆

13.2HNq嘉泰姆

1.25|0.8HNq嘉泰姆

5~12HNq嘉泰姆

3000HNq嘉泰姆

CXSD6278HNq嘉泰姆

SOP-8HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

10HNq嘉泰姆

3.3HNq嘉泰姆

5.5HNq嘉泰姆

0.8HNq嘉泰姆

5HNq嘉泰姆

2100HNq嘉泰姆

CXSD6279BHNq嘉泰姆

SOP-14HNq嘉泰姆

VM   HNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

10HNq嘉泰姆

5HNq嘉泰姆

13.2HNq嘉泰姆

0.8HNq嘉泰姆

12HNq嘉泰姆

2000HNq嘉泰姆

CXSD6280HNq嘉泰姆

TSSOP-24HNq嘉泰姆

|QFN5x5-32HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

2HNq嘉泰姆

20HNq嘉泰姆

5HNq嘉泰姆

13.2HNq嘉泰姆

0.6HNq嘉泰姆

5~12HNq嘉泰姆

4000HNq嘉泰姆

CXSD6281NHNq嘉泰姆

SOP14HNq嘉泰姆

QSOP16HNq嘉泰姆

QFN-16HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

30HNq嘉泰姆

2.9HNq嘉泰姆

13.2HNq嘉泰姆

0.9HNq嘉泰姆

12HNq嘉泰姆

4000HNq嘉泰姆

CXSD6282HNq嘉泰姆

SOP-14HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

30HNq嘉泰姆

2.2HNq嘉泰姆

13.2HNq嘉泰姆

0.6HNq嘉泰姆

12HNq嘉泰姆

5000HNq嘉泰姆

CXSD6282AHNq嘉泰姆

SOP-14HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

30HNq嘉泰姆

2.2HNq嘉泰姆

13.2HNq嘉泰姆

0.6HNq嘉泰姆

12HNq嘉泰姆

5000HNq嘉泰姆

CXSD6283HNq嘉泰姆

SOP-14HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

25HNq嘉泰姆

2.2HNq嘉泰姆

13.2HNq嘉泰姆

0.8HNq嘉泰姆

12HNq嘉泰姆

5000HNq嘉泰姆

CXSD6284/AHNq嘉泰姆

LQFP7x7 48HNq嘉泰姆

TQFN7x7-48HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

6HNq嘉泰姆

0.015HNq嘉泰姆

1.4HNq嘉泰姆

6.5HNq嘉泰姆

-HNq嘉泰姆

5HNq嘉泰姆

1800HNq嘉泰姆

CXSD6285HNq嘉泰姆

TSSOP-24PHNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

2HNq嘉泰姆

20HNq嘉泰姆

2.97HNq嘉泰姆

5.5HNq嘉泰姆

0.8HNq嘉泰姆

5~12HNq嘉泰姆

5000HNq嘉泰姆

CXSD6286HNq嘉泰姆

SOP-14HNq嘉泰姆

VMHNq嘉泰姆

1HNq嘉泰姆

1HNq嘉泰姆

10HNq嘉泰姆

5HNq嘉泰姆

13.2HNq嘉泰姆

0.8HNq嘉泰姆

12HNq嘉泰姆

3000HNq嘉泰姆

CXSD6287HNq嘉泰姆

SOP-8-P|DIP-8HNq嘉泰姆